いまさらながら,素数判定 @ Haskell
とりあえず,試し割りとMiller-Rabin.
Miller-Rabinはアルゴリズム自体は簡単.
なんで,こんなコードがほぼ正しい答えを返すか若干不思議である
(乱択アルゴリズムは,相当単純なのに,まぁまぁなものが多い).
決定性アルゴリズムも実装したいが…
module IsPrime where import Control.Arrow (first) import Modulo (powMod) -- ============================================================ -- Primality test by trial division -- ============================================================ primes :: Integral a => [a] primes = 2:filter isPrimeDivision [3,5..] isPrimeDivision :: Integral a => a -> Bool isPrimeDivision 1 = False isPrimeDivision n = all ((0/=).mod n).takeWhile (<=u) $ primes where u = floor.sqrt.fromIntegral $ n -- ============================================================ -- Primality test by Miller-Rabin -- ============================================================ -- if a = 2^r * d then return (r, d) index2 :: (Integral a, Enum b, Num b) => a -> (b, a) index2 a | even a = first succ.index2.div a $ 2 | otherwise = (0, a) -- True : n is probably prime -- False : n is composite millerRabinPrimality :: (Integral a, Integral b) => a -> Int -> b -> a -> Bool millerRabinPrimality n s d a | powMod a d n == 1 = True | otherwise = any (== n - 1).take s.iterate ((`mod` n).(^2)).powMod a d $ n isPrimeMillerRabin :: (Integral a) => a -> Int -> Bool isPrimeMillerRabin n k | n == 1 = False | n == 2 = True | even n = False | otherwise = all (millerRabinPrimality n s d).take k.takeWhile (< n) $ primes where (s,d) = index2 $ n - 1
コードをよーく見ると分かるが,このMiller-Rabin乱択アルゴリズムになっていないというオチ.
ランダムに選んでチェックではなく,素数を前から順に何個かチェックになっている.