APR素数判定
多分当っている.
コード長いです.
Miller Rabin はやはり非常にシンプル.
それに比べ,APRは…
まぁ,実装がヘタなんだよと,言われればそれまでだが.
しかし,綺麗なコードがあれば見てみたいが,すくなくとも簡単にはwebでは見つからなかった.
100桁とかの素数判定を10分とか20分あれば,やってくれると思います(計算機のパワーに依存).
ちなみに,10^123の次の素数を求めるのに約3分@Desktop PC.
module APR where import Data.List (sort, genericTake, genericSplitAt, genericReplicate) import Data.Array.IArray (Array, array, (!)) import Modulo (powMod, primitiveRoots, congruence) import IsPrime (isPrimeDivision) import Debug.Trace (trace) debug = True using x | debug = trace ("using " ++ show x) x | otherwise = x type Polynomial = [Integer] -- [a_0, a1, ..., a_n-1, a_n] -- <=> a_0 + a_1 x + ... + a_n-1 x^n-1 + a_n x^n --mkPoly :: Integer -> [Integer] -> Polynomial mkPoly p xs = mkpart 0 0.sort.map (`mod` p) $ xs where mkpart i c [] = c : genericReplicate (p - i - 1) 0 mkpart i c (y:ys) | i == y = mkpart i (c + 1) ys | otherwise = c : mkpart (i+1) 0 (y:ys) pMulMod :: Integer -> Polynomial -> Polynomial -> Polynomial pMulMod n xs ys = foldl1 pAdd.zipWith (\x zs -> map ((`mod` n).(x*)) zs) xs.iterate shift $ ys where shift zs = last zs : init zs pAdd xs = zipWith add $ foldr seq xs xs -- リストの中も正格評価 add x y = if x + y >= n then x + y - n else x + y -- xs^k (mod n) pPowMod :: Integer -> Polynomial -> Integer -> Polynomial pPowMod n xs k | k == 1 = xs | even k = pPowMod n (pMulMod n xs xs) (div k 2) | otherwise = pMulMod n xs $ pPowMod n xs (k - 1) normal :: Integer -> Polynomial -> Polynomial normal n (x:xs) = map ((`mod` n).(subtract x)) xs -- c * x^a in Z[x_p] unit :: Integer -> Integer -> Integer -> Polynomial unit p a c = genericReplicate a' 0 ++ [c] ++ genericReplicate (mod (p - a' - 1) p) 0 where a' = mod a p -- is Unit ? i.e. xs = x^a in Z_n[x_p] isUnit :: Integer -> Polynomial -> Bool isUnit n xs = sum xs' == 1 || all (n - 1 ==) xs' where xs' = normal n xs indArray :: Integer -> Array Integer Integer indArray q = array (1, q - 1).zip inds $ [1..] where g = head.primitiveRoots $ q inds = genericTake (q - 1).iterate ((`mod` q).(g*)) $ g -- Jacobi Sum J(X^e, X^f) for the prime p, q jacobiSum :: Integer -> Integer -> Array Integer Integer -> Integer -> Integer -> Polynomial jacobiSum p q inds e f = mkPoly p [e * ind a + f * ind (1 - a)| a <- [2..q-1]] where ind a = inds ! (mod a $ q) -- Gauss Sum to Jacobi Sum for the prime p, q -- G(X)^p (mod n) = X(-1)*q*J(X,X)*J(X,X^2)*...*J(X,X^(p-2)) gaussSumP :: Integer -> Integer -> Integer -> Array Integer Integer -> Polynomial gaussSumP n p q inds = foldl (pMulMod n) xq js where js = map (jacobiSum p q inds 1) [1..p-2] xq = unit p (inds ! (q-1)) q -- Gauss Sum toJacobi Sum for arbitrarily number n (> p) -- G(X)^n = poly * G(X^t) where t = mod n p gaussSum :: Integer -> Integer -> Integer -> Array Integer Integer -> Polynomial gaussSum n p q inds = foldl (pMulMod n) gpa js where gpa = pPowMod n (gaussSumP n p q inds) a (a,b) = divMod n p js = map (jacobiSum p q inds 1) [1..b-1] -- find min w s.t. G(X)^(u*p^w) == unit toUnit :: Integer -> Integer -> Integer -> Integer -> (Integer, Polynomial) toUnit n p q u = fst $ until (isUnit n.snd) next ((1,gpu), gpu) where gpu = pPowMod n (gaussSumP n p q ind) u next ((w, g0), g1) = ((w+1, g1), pPowMod n g1 p) ind = indArray q -- coefficient condition; False => composite coefCond :: Integer -> Integer -> Polynomial -> Bool coefCond n p xs = all cpart [0..p - 1] where cpart i = any ((1==).gcd n) $ descend i descend j = let (as, (b:bs)) = genericSplitAt j xs in as ++ [b - 1] ++ bs unitSearch :: Integer -> Polynomial -> Integer unitSearch n xs | x > 1 = 0 | otherwise = upart 1 $ x:xs' where (x:xs') = normal n xs upart a (1:ys) = a upart a (y:ys) = upart (a + 1) ys aprPrimality :: Integer -> Integer -> Integer -> Integer -> [Integer] -> Bool -> Bool aprPrimality _ _ _ _ [] _ = True aprPrimality n t s p (q:qs) sub | normal n g /= normal n c = False | a /= 0 || r /= 1 = if all ((0/=).(mod n)) rs then aprPrimality n t s p qs sub else False | sub = aprPrimality n t s p qs sub | subtest = aprPrimality n t s p qs True | otherwise = False where rs = genericTake t.takeWhile (1/=) $ iterate ((`mod` s).(n*)) (mod n s) g | p == 2 = let a = mod (div n 2 * ind ! (q - 1)) 2 in unit 2 a $ powMod q (div n 2) n | otherwise = gaussSum n p q $ ind c = unit p (mod (-n) p * ind ! (mod n q)) 1 ind = indArray q a = mod (ind ! (mod n q)) p r = powMod n (p - 1) (p ^ 2) subtest | debug = subPrimality n t s $ trace ("sub-test " ++ show p) p | otherwise = subPrimality n t s p subPrimality :: Integer -> Integer -> Integer -> Integer -> Bool subPrimality n t s p | not.all (coefCond n p) $ xss = False | otherwise = all ((0/=).(mod n)) rs where u = until ((0/=).(`mod` p)) (`div` p) $ n ^ (p - 1) - 1 qs = filter ((0==).(`mod` p).pred).firstPrimes.initialPrimes $ n (w, xss) = foldl search (1, []) qs search (w, xss) q | w > w' = (w, xss) | w' > w = (w', [xs]) | w' == 1 = (w, []) | w' == w = if all (n - 1 ==).normal n.pPowMod n xs $ p then (w, xs:xss) else (w, xss) where (w', xs) = toUnit n p q u unitRoot q =let z = pPowMod n (gaussSumP n p q (indArray q)) $ p ^ (w - 1) * u a = unitSearch n z g = head $ primitiveRoots q in powMod g a q m = congruence qs.map unitRoot $ qs rs = genericTake t.takeWhile (1/=) $ iterate ((`mod` s).(m*)) (mod m s) isPrimeAPR :: Integer -> Bool isPrimeAPR n | gcd n t /= 1 = False | gcd n s /= 1 = False | otherwise = and [aprPrimality n t s (using p) qs' False| p <- ps, let qs' = filter ((0==).(`mod` p).pred) qs] where ps = initialPrimes $ if debug then trace ("test " ++ show n) n else n qs = firstPrimes ps t = product ps s = product qs firstPrimes :: [Integer] -> [Integer] firstPrimes ps = filter isPrimeDivision [succ.product $ ps' | ps' <- subsequences ps] initialPrimes :: Integer -> [Integer] initialPrimes n | n <= 138 = [] | n <= 10 ^ 4 = [2,11] | n <= 10 ^ 7 = [2,5,7] | n <= 10 ^ 8 = [2,3,5] | n <= 10 ^ 12 = [2,3,5,17] | n <= 10 ^ 19 = [2,3,5,7] | n <= 10 ^ 35 = [2,3,5,7,17] | n <= 10 ^ 46 = [2,3,5,7,13] | n <= 10 ^ 89 = [2,3,5,7,11,13] | n <= 10 ^ 166 = [2,3,5,7,11,13,17] | n <= 10 ^ 329 = [2,3,5,7,11,13,17,23] | n <= 10 ^ 620 = [2,3,5,7,11,13,17,19,23] -- subsequences from Data.List GHC 6.8.10 subsequences :: [a] -> [[a]] subsequences xs = [] : nonEmptySubsequences xs nonEmptySubsequences :: [a] -> [[a]] nonEmptySubsequences [] = [] nonEmptySubsequences (x:xs) = [x] : foldr f [] (nonEmptySubsequences xs) where f ys r = ys : (x : ys) : r
すこーし,コードがカオス.
しかし,そもそも場合分けが多いアルゴリズムだから,しょうがないのか?
primitive root とか
module Modulo (gcd', productMod, invMod, powMod, jacobi, sqrtMod, sqSum, primitiveRoots, congruence) where import Data.List (foldl', findIndex, nub) -- input; m,n:正整数 -- output; a,b s.t. am+bn=gcd(m,n) gcd' :: Integral a => a -> a -> (a, a) gcd' m n | m < n = let (a,b) = gcd' n m in (b,a) | r == 0 = (1,1-q) | otherwise = let (a,b) = gcd' n r in (b,a-b*q) where (q,r) = divMod m n -- product xs (mod p) productMod :: Integral a => a -> [a] -> a productMod p = foldl' (mulMod p) 1 where mulMod p a b = mod (a*b) p -- xn=1(mod p) なる x を返す invMod :: Integral a => a -> a -> a invMod n = fst.gcd' n -- a^n (mod p) powMod :: (Integral a, Integral b) => a -> b -> a -> a powMod a n p | n == 0 = 1 | even n = powMod (mod (a*a) p) (div n 2) p | otherwise = (a * powMod a (n-1) p)`mod` p -- ============================================================ -- 4n+1型素数の平方和分解 -- ============================================================ jacobi :: Integral a => a -> a -> a jacobi a n | a < 0 && mod n 4 == 1 = jacobi (-a) n | a < 0 && mod n 4 == 3 = - jacobi (-a) n | a < 2 = a | even a && (mod n 8 == 1 || mod n 8 == 7) = jacobi (div a 2) n | even a && (mod n 8 == 3 || mod n 8 == 5) = - jacobi (div a 2) n | mod a 4 == 3 && mod n 4 == 3 = - jacobi (mod n a) a | otherwise = jacobi (mod n a) a -- sqrt n (mod p) sqrtMod :: Integral a => a -> a -> a sqrtMod n p = let m = fst.gcd' n$ p w = head.filter((==(-1)).flip jacobi p)$[2..] (s,q) = until(odd.snd) div2$ (0,p-1) v = powMod w q p step u = case findIndex (==1).take s.iterate sqMod $ mod (u^2*m) p of Just 0 -> u Just i -> step $ (u*(powMod v (2^(s-i-1)) p)) `mod` p Nothing -> error$ "There is no such x that x^2 ="++show n++" (mod "++show p++")" in step $ powMod n (div (q+1) 2) p where div2 (s,q) = (s+1,div q 2) sqMod x = powMod x 2 p -- 4n+1型素数の平方和分解 sqSum :: Integral a => a -> (a, a) sqSum p = let r = sqrtMod (p-1) p in fst.until((==1).snd) next$ ((1,r),div (r*r+1) p) where next ((x,y),k) = let u = g$ x `mod` k v = g$ y `mod` k x' = abs$ (x*v-y*u) `div` k y' = abs$ (x*u+y*v) `div` k k' = (u*u+v*v) `div` k in ((x',y'),k') where g q = if q < div k 2 then q else q-k -- ============================================================ -- 原始根 -- ============================================================ -- Given an odd prime p, find a primitive root modulo p primitiveRoots :: Integer -> [Integer] primitiveRoots p = filter isRoot [2..p - 1] where isRoot a = all (/=1) [powMod a (div (p - 1) q) p | q <- ps] ps = nub.primeFactors $ p - 1 -- ============================================================ -- 連立合同方程式 -- ============================================================ -- Input: 互いに素な整数 m1,m2,...,mn, 整数 a1,a2,...,an -- Output: 連立合同方程式の解 x in Zm s.t. x = ai (mod mi) congruence :: (Integral a) => [a] -> [a] -> a congruence ms as = (`mod` m).sum.zipWith3 add as vs $ us where m = product ms us = [div m mi | mi <- ms] vs = zipWith invMod us ms add a v u = a * v * u -- ============================================================ -- Primality check by trial division -- ============================================================ primes :: Integral a => [a] primes = 2:filter isPrimeDivision [3,5..] isPrimeDivision :: Integral a => a -> Bool isPrimeDivision 1 = False isPrimeDivision n = all ((0/=).mod n).takeWhile (<=u) $ primes where u = floor.sqrt.fromIntegral $ n primeFactors n = pf n primes where pf m (p:ps) | p * p > m = [m] | mod m p == 0 = p : pf (div m p) (p:ps) | otherwise = pf m ps