連立合同方程式
ちょっと,連立合同方程式を解く必要がでてきたので,実装してみた.
ここで,invMod n p = n^(-1) (mod p).
-- Input: 互いに素な整数 m1,m2,...,mn, 整数 a1,a2,...,an -- Output: 連立合同方程式の解 x in Zm s.t. x = ai (mod mi) congruence :: (Integral a) => [a] -> [a] -> a congruence ms as = (`mod` m).sum.zipWith3 add as vs $ us where m = product ms us = [div m mi | mi <- ms] vs = zipWith invMod us ms add a v u = a * v * u
かなり,あっさり.