Google Code Jam 2011 決勝 A, B やってみた。
http://code.google.com/codejam/japan/contests.html
時間がとれたので、やってみた。どちらも、large通ったけど、解説読んでないから、完全に正しい保証はない(多分あってると思うけど、例外処理とか
A
予想をつけて、小さい問題サイズで正しいことを確認。直観的ではある。
import Control.Monad import Text.Printf import Data.List f :: Num a => [a] -> a f xs = sum $ zipWith (*) xs (tail xs) g :: [a] -> [a] -> [a] -> ([a], [a]) g ls rs [] = (ls,rs) g ls rs [x] = (x:ls,rs) g ls rs (x:y:zs) = g (x:ls) (y:rs) zs h :: [Integer] -> Double h xs = (c*).fromIntegral $ f (x: reverse ls) + f (x: reverse rs) + (head ls) * (head rs) where (x:xs') = reverse.sort $ xs (ls,rs) = g [] [] xs' c = (/2).sin $ 2 * pi / (fromIntegral $ length xs) -- output and input function main :: IO () main = do [t] <- getList :: IO [Int] forM_ [1..t] $ \i -> do _ <- getLine xs <- getList :: IO [Integer] printf "Case #%d: %f\n" i $ h xs getList :: Read a => IO [a] getList = liftM (map read.words) getLine
B
Project Eulerで似たような問題をやったことがあったので、それを思い出しながら。
配列使うのが面倒だったので、メモ化再帰。だから少し遅い。毎回素因数分解してるし。
import Control.Monad import Text.Printf import Data.List import ONeillPrimes (primes) import Data.MemoTrie -- a^n (mod p) powMod :: (Integral a, Integral b) => a -> b -> a -> a powMod a n p | n == 0 = 1 | even n = powMod (mod (a*a) p) (div n 2) p | otherwise = (a * powMod a (n-1) p)`mod` p factors :: Integer -> [(Integer, Int)] factors n = map (\xs -> (head xs, length xs)).group $ f n primes where f _ [] = [] f m (p:ps) | p*p > m = [m] | m `mod` p == 0 = p:f(div m p) (p:ps) | otherwise = f m ps totient :: Integer -> Integer totient n = product [(p-1) * p ^ (k-1) | (p, k) <- factors n] f, memoF :: Integer -> Integer -> Integer -> Integer f x 0 m = x `mod` m f x _ 1 = 0 f x _ 2 | odd x = 1 | even x = 0 f x n m | mod x m == 0 = 0 f x n m | x < s = f (x^x) (n-1) m | c == 1 = 0 | otherwise = (`mod` m) $ (a ^ s * (powMod a (mod (b-s) m') c)) where a = memoF x (n-1) m b = memoF x (n-1) m' c = g x m m' = totient c s = h x (m `div` c) memoF = memo3 f g, h :: Integer -> Integer -> Integer g x m = product [p ^ k | (p, k) <- factors m, mod x p /= 0] h x c = toInteger.succ.length.takeWhile (\y -> y `mod` c /= 0) $ iterate (*x) x -- output and input function main :: IO () main = do [t] <- getList :: IO [Int] forM_ [1..t] $ \i -> do (x:n:m:_) <- getList :: IO [Integer] printf "Case #%d: %d\n" i $ memoF x n m getList :: Read a => IO [a] getList = liftM (map read.words) getLine