Problem 221
221 Alexandrian Integers
Problem 221 - Project Euler
似た問題が前にもあった.それは,n^2の約数が鍵になっていたが…
今回はn^2+1の約数が鍵になる.約数を求めるのは結構大変.
とりあえず,素因数分解を利用してみた.
{-# OPTIONS_GHC -fbang-patterns #-} import Control.Monad (when, guard) import Control.Monad.ST (ST, runST) import Data.Array.ST (STUArray, newArray, readArray, writeArray) import Data.List (sort, group) alexandrian :: Integer -> [Integer] alexandrian n = do let u = floor $ fromInteger (div n 4) ** (1/3) primes = primesUpTo u p <- [1..u] let v = min p.floor.sqrt.fromInteger.div n $ 4 * p d <- takeWhile (<= v).divisors primes $ p^2 + 1 let a = p * (p+d) * (p + div (p^2+1) d) guard $ a <= n return a main = print.(!!149999).sort.alexandrian $ 2 * 10^15 divisors :: [Integer] -> Integer -> [Integer] divisors ps = sort.map product.sequence.map (scanl (*) 1).group.factors ps factors :: [Integer] -> Integer -> [Integer] factors ps n = f n ps where f _ [] = [] f m (p:ps) | p*p > m = [m] | m `mod` p == 0 = p:f (div m p) (p:ps) | otherwise = f m ps primesUpTo :: Integer -> [Integer] primesUpTo n = runST $ do p <- newArray (1,div n 2) True :: ST s (STUArray s Integer Bool) let u = floor.sqrt.fromIntegral $ div n 2 loop !i = when (i <= u) $ sieve i (2*i*(i+1)) >> loop (i+1) sieve !i !j = when (j <= div n 2) $ writeArray p j False >> sieve i (j+2*i+1) primes !i !ps | i > div n 2 = return.reverse $ ps | otherwise = do q <- readArray p i if q then primes (i+1) (2*i+1:ps) else primes (i+1) ps loop 1 primes 1 [2]
引数が 2 * 10^15 なのは度重なる実験の結果.ずるいといえば,ずるい.