最小全域木 クラスカル法
UnionFindさえあれば,結構簡単に実装できるのね.
ただ,正しく動くかほとんど確認していないので,バグがあるかも.
// disjoint_set.h #include <iostream> using namespace std; class UnionFind { private: int *root, *rank; // root < 0 のときはサイズの情報 public: UnionFind(const int &n) { root = new int[n], rank = new int[n]; fill_n(root, n, -1), fill_n(rank, n, 0); } int find(const int &x) { if (root[x] < 0) return x; return root[x] = find(root[x]); } void unionSet(const int &x, const int &y) { int px = find(x), py = find(y); if (px == py) return; if (rank[px] > rank[py]) root[px] += root[py], root[py] = px; else if (rank[px] < rank[py]) root[py] += root[px], root[px] = py; else //if (rank[px] == rank[py]) root[px] += root[py], root[py] = px, rank[px]++; } };
//kruskal.cpp #include <queue> #include "disjoint_set.h" #include "graph.h" template <class T> EdgeList kruskal(const Graph &g, const EdgeProperty<T> &w) { const int n = g.succ.size(); UnionFind u(n); typedef pair<T, Edge> TE; priority_queue<TE, vector<TE>, greater<TE> > q; for (Vertex i = 0; i < n; ++i) foreach(Vertex j, g.succ[i]) if (i < j) q.push(TE(w(i, j), Edge(i, j))); EdgeList t; while (t.size() < n-1 && !q.empty()) { const Edge e = q.top().second; q.pop(); if (u.find(e.first) != u.find(e.second)) t.push_back(e), u.unionSet(e.first, e.second); } return t; } int main() { const int n = 4; Graph g(n); EdgeProperty<int> w; w[g.add_edge(0, 1)] = 3; w[g.add_edge(1, 0)] = 3; w[g.add_edge(0, 2)] = 2; w[g.add_edge(2, 0)] = 2; w[g.add_edge(1, 2)] = 1; w[g.add_edge(2, 1)] = 1; w[g.add_edge(0, 3)] = 0; w[g.add_edge(3, 0)] = 0; w[g.add_edge(3, 2)] = 1; w[g.add_edge(2, 3)] = 1; EdgeList mst = kruskal<int>(g, w); foreach(Edge e, mst) cout << e.first << " -> " << e.second << endl; }