Google Code Jam 2009 Round2 D (メモ)
書いてみた.
上位の方のソースを見ると2分探索で解いていた.
まね.
import Control.Monad import Text.Printf import Debug.Trace -- main part data Circle = C { x::Double, y::Double, r::Double} main = do (c:_) <- getList :: IO [Int] forM_ [1..c] $ \i -> do (n:_) <- getList :: IO [Int] cs <- replicateM n getList :: IO [[Double]] printf "Case #%d: %f\n" i $ solve n cs eps :: Double eps = 1.0E-7 solve :: t -> [[Double]] -> Double solve n cs = binSearch (feasible n cs') 0 eps where cs' = map (\[x,y,r] -> C x y r) cs -- min x s.t. p x = True -- where p is monotone (i.e x < y => p x < p y) -- p l = False binSearch :: (Fractional a, Ord a) => (a -> Bool) -> a -> a -> a binSearch p l e = binpart (l + s) (l + 2 * s) where s = until (\x -> p (l + 2 * x)) (* 2) 1 binpart a b | b - a < e = m | p m = trace ("searching: " ++ show m) $ binpart a m | otherwise = trace ("searching: " ++ show m) $ binpart m b where m = (a + b) / 2 feasible :: t -> [Circle] -> Double -> Bool feasible n cs s = any cover.choose 2 $ candidate n cs' where cs' = map (\(C x y r) -> C x y (s-r)) cs cover [p,q] = all (\c -> inCircle p c || inCircle q c) cs' inCircle (u,v) c = (u - x c)^2 + (v - y c)^2 <= (r c)^2 + eps candidate :: t -> [Circle] -> [(Double, Double)] candidate n cs = cs' ++ concat [intersection c1 c2| [c1,c2] <- choose 2 cs] where cs' = map (\(C x y r) -> (x,y)) cs choose :: (Integral t) => t -> [a] -> [[a]] choose _ [] = [] choose 0 _ = [[]] choose (n+1) (x:xs) = map (x:) (choose n xs) ++ choose (n+1) xs intersection :: Circle -> Circle -> [(Double, Double)] intersection c1 c2 | d > r c1 + r c2 + eps = [] -- too far each other | d < abs (r c1 - r c2) + eps = [] -- one contain another | d < eps = [] -- same center | abs a > eps = ipart a b c (x c1) (y c1) (r c1) | otherwise = map swap $ ipart b a c (y c1) (x c1) (r c1) where a = 2 * (x c1 - x c2) b = 2 * (y c1 - y c2) c = (r c1)^2 - (x c1)^2 - (y c1)^2 - ( (r c2)^2 - (x c2)^2 - (y c2)^2 ) d = sqrt $ (a/2)^2 + (b/2)^2 swap (x,y) = (y,x) -- solve a*x+b*y+c=0, (x-u)^2+(y-v)^2=r^2 ipart :: Double -> Double -> Double -> Double -> Double -> Double -> [(Double, Double)] ipart a b c u v r = [(x1,y1), (x2,y2)] where a' = a^2 + b^2 b' = 2 * (a*b*u + b*c - a^2*v) c' = c^2 + a^2*u^2 + 2*a*c*u + a^2*v^2 - a^2*r^2 d' = max 0 $ b'^2 - 4*a'*c' y1 = (-b' + sqrt d') / (2*a') x1 = (-b*y1 - c) / a y2 = (-b' - sqrt d') / (2*a') x2 = (-b*y2 - c) / a -- output and input function getList :: Read a => IO [a] getList = liftM (map read.words) getLine
しかし,遅いぞ.これ.