Problem 231
231 The prime factorisation of binomial coefficients
Problem 231 - Project Euler
二項係数の約数和を求める問題.
結局は含まれる各素数の数が分かれば良いので,ふるいで素数を求めれば,あとは簡単.
import Number (primesUpTo) count :: (Integral a) => a -> a -> a count n p= sum.takeWhile (>0).tail.iterate (`div` p) $ n p231 m n = sum.map f.primesUpTo $ m where f p = p * ( count m p - count n p - count (m - n) p ) main :: IO () main = print $ p231 (2*10^7) (15*10^6)
やはり,Haskellではあまり速くない.
C++とかで実装したら速いんだろうな.
追記
C++で実装してみた.
一瞬すぎる…
#include <iostream> #include <vector> #include <cmath> #define FOR(x, xs) for (__typeof( (xs).begin() ) x = (xs).begin(); x != (xs).end(); x++) using namespace std; static const int m = 20000000; static const int n = 15000000; static const int u = sqrt(m); int count (int q, int p) { int c = 0; for ( ; q > 0; c += (q /= p) ); return c; } int main() { vector<bool> isPrime( m + 1); FOR (q, isPrime) *q = true; isPrime[0] = false; isPrime[1] = false; for (int q = 2; q <= u; q++) if ( isPrime[q] ) for (int s = q * q; s <= m; s += q) isPrime[s] = false; long long s = 0; for (int q = 2; q <= m; q++) if ( isPrime[q] ) s += q * ( count(m , q) - count(n, q) - count(m - n, q)); cout << s <<endl; }