Problem 229
229 Four Representations using Squares
Problem 229 - Project Euler
この問題は難しかった.
なんてったって,問題サイズが 2*10^9 と非常に大きい.
詳しくは,明日ぐらいに追記する.
遅いほう.Haskell, Java で実装したらメモリが足りなくて,うわーん,ってなった.
力技.マシンパワーに頼る作戦.
#include <iostream> #include <vector> #include <cmath> #define FOR(x, xs) for (__typeof( (xs).begin() ) x = (xs).begin(); x != (xs).end(); x++) using namespace std; static const int n = 2000000000; static const int u = sqrt(n); void sieve(int k, vector<bool> &s, vector<bool> &t) { FOR(x, s) *x = false; for (int x = 1; x <= u; x++) for (int y = 1, u_y = sqrt( ( n - x * x ) / k); y <= u_y; y++) if( t[ x * x + k * y * y] ) s[ x * x + k * y * y ] = true; } int main() { vector<bool> set1( n + 1 ); vector<bool> set2( n + 1 ); FOR(p, set2) *p = true; sieve(7, set1, set2); sieve(3, set2, set1); sieve(2, set1, set2); sieve(1, set2, set1); int count = 0; for (int i =1; i < n; i++) if( set2[i] ) count++; cout << count << endl; }
速いほう.平方数とそれ以外で場合分けして考えれば,良いことに気がついた.
#include <iostream> #include <vector> #include <map> #include <cmath> #define FOR(x, xs) for (__typeof( (xs).begin() ) x = (xs).begin(); x != (xs).end(); x++) using namespace std; static const int n = 2000000000; static const int u = sqrt(n); static const int v = sqrt(u); map<int, int> factors (int n, vector<int> &primes) { map<int, int> fs; FOR (p, primes) { if ( *p * *p > n ) break; int c = 0; while ( n % *p == 0 ) { n /= *p; c ++; } if ( c > 0 ) fs[*p] = c; } if ( n > 1 ) fs[n] = 1; return fs; } int main() { // find priems up to u, using sieve vector<bool> isPrime( u + 1); FOR (q, isPrime) *q = true; isPrime[0] = false; isPrime[1] = false; for (int q = 2; q <= v; q++) if ( isPrime[q] ) for (int s = q * q; s <= u; s += q) isPrime[s] = false; vector<int> smallPrimes; smallPrimes.push_back(2); for (int q = 3; q <= u; q += 2) if ( isPrime[q] ) smallPrimes.push_back(q); // find base-priems up to n, using sieve // p = 1, 25, 121 ( mod 168 ) vector<bool> isBasePrime ( n / 168 * 3 + 3 ); FOR (p , isBasePrime) *p = true; isBasePrime[0] = false; FOR (p, smallPrimes) for (int q = *p; q < *p * 168; q += *p) if ( q % 168 == 1 || q % 168 == 25 || q % 168 == 121 ) for (int s = *p == q ? *p * 169: q; s < n; s += *p * 168) switch ( s % 168 ) { case 1 : isBasePrime[ s / 168 * 3 ] = false; break; case 25 : isBasePrime[ s / 168 * 3 + 1 ] = false; break; case 121: isBasePrime[ s / 168 * 3 + 2 ] = false; break; } vector<int> basePrimes; for (int i = 0; i <= n / 168 *3 + 3; i++) if ( isBasePrime[i] ) switch ( i % 3 ) { case 0: basePrimes.push_back( i / 3 * 168 + 1 ); break; case 1: basePrimes.push_back( i / 3 * 168 + 25 ); break; case 2: basePrimes.push_back( i / 3 * 168 + 121 ); break; } // counting non-sqaure-type numbers int c = 0; FOR (p, basePrimes) c+=sqrt( n / *p ); // K^2 p for (int p = 0; basePrimes[p] <= u; p++) // K^2 p q for (int q = p + 1, m = n / basePrimes[p] ; basePrimes[q] <= m; q++) c += sqrt ( n / ( basePrimes[p] * basePrimes[q] ) ); for (int p = 0, mp = cbrt(n); basePrimes[p] <= mp; p++) // K^2 p q r for (int q = p + 1, mq = sqrt ( n / basePrimes[p] ); basePrimes[q] <= mq; q++) for (int r = q + 1, mr = n / ( basePrimes[p] * basePrimes[q] ); basePrimes[r] <= mr; r++) c += sqrt ( n / ( basePrimes[p] * basePrimes[q] * basePrimes[r] ) ); // counting sqaure-type numbers for (int x = 1; x <= u; x++) { map<int, int> fs = factors(x, smallPrimes); bool b1 = false, b2 = false, b3 = false, b7 = false; FOR (pn, fs) { int p = (*pn).first; b1 = b1 || p % 4 == 1; b2 = b2 || p % 8 == 1 || p % 8 == 3; b3 = b3 || fs[2] >= 1 || p % 6 == 1; b7 = b7 || fs[2] >= 2 || p % 14 == 1 || p % 14 == 9 || p % 14 == 11; if ( b1 && b2 && b3 && b7 ) { c++; break; } } } cout << c << endl; }