Round 1C (Google Code Jam 2009)
ヘボヘボだった,1Bだが,なんとか通過していた.
練習のために,1Cもやってみた.
時間制限とかプレッシャーがないぶん,気楽で,まぁまぁ良い感じだった(たぶん,問題も簡単になっている).
(前回と同じテンプレートを使用しています.)
A
そのまま.ただし,1進数は許されないことに注意.
main = do n <- getInt forM_ [1..n] $ \i -> do s <- getLine putStrLn.output i $ f s f :: (Eq a) => [a] -> Integer f cs = foldl' add 0.mapMaybe (`lookup` m) $ cs where ds = nub cs b = max 2 $ genericLength ds m = zip ds (1:0:[2..]) add x y = b * x + y
B
微分とかできますか?って問題なんですかね.
実は,計算誤差のこと全く考えていなかった(なんとうマヌケ).ちょっと悩んだけど,
出力みたらNaNとか負の時間とかになっていたので,そこで気づいた.
main = do t <- getInt forM_ [1..t] $ \i -> do n <- getInt cs <- liftM (coef.unite).replicateM (fromIntegral n) $ getInts putStrLn $ "Case #"++show i++": "++ show (dMin n cs)++" "++show (tMin cs) unite :: Integral a => [[a]] -> [a] unite fs = map sum.transpose $ fs coef :: Integral a => [a] -> [a] coef [x,y,z,vx,vy,vz] = unite.map f $ [(vx,x),(vy,y),(vz,z)] where f (a,b) = [a^2, 2*a*b, b^2] pos x = if x < 0 then 0 else x tMin (0:_) = 0 tMin (p:q:_) = pos $ - fromIntegral q / fromIntegral (2*p) dMin n cs = (/n').sqrt.pos.sum.zipWith (*) (map fromIntegral cs) $ [t^2, t, 1] where t = tMin cs n' = fromIntegral $ n -- output and input function getInts :: IO [Integer] getInts = getList getInt :: IO Integer getInt = liftM head getInts
あと,Intで計算したら桁落ちしてたので,Integerにした.
C
逆から考えてDP.
囚人が抜けていくのではなく,囚人が空いているかしょに入ってくると思って再帰.
若干実行時間が,遅い気もするが,配列ではなく,メモ化再帰だから,おおめにみる.
main = do n <- getInt forM_ [1..n] $ \i -> do (p:q:_) <- getInts qs <- getInts putStrLn.output i $ (bribe p qs) bribe :: Int -> [Int] -> Int bribe p qs = b 1 $ length ss where ss = map pred.zipWith (-) (qs++[p+1]) $ 0:qs bM = memo2 b b i j | i == j = 0 | i < j = b0 i j + minimum [bM i k + bM (k+1) j| k <- [i..j-1]] b0 i j = pred.sum.intersperse 1.take (j-i+1).drop (i-1) $ ss
結構,シンプルだと自分では思っている.やはり,MemoTrieが便利(memo2ってやつ).
# C は 雰囲気が Project Euler #253 似ていると思った.