Problem 182
http://projecteuler.net/index.php?section=problems&id=182
p182 p q = sum [e | e <-[2..phi-1], gcd e phi == 1, gcd (e-1) (p-1) == 2, gcd (e-1) (q-1) == 2] where phi = (p-1)*(q-1) main = print $ p182 1009 3643 {-- g(e,p) = x^e=x (mod p) の解の数 = gcd(e-1,p-1)+1 a : prime of Zp (Zpの生成元) ,0 <= y < p (a^y)^e=a^y (mod p) iff ye-y = y(e-1) = 0 (mod p-1) gcd(e-1,p-1) = d とすると y(e-1) = ykd p-1 = ld y(e-1) = z(p-1) iff yk=zl -> y = l,2l,3l..dl x=0は常に解 g(e,pq) = g(e,p)*g(e,q) 中国剰余定理から x = a (mod p) x = b (mod p) の解は mod pq では一意 --}