Problem 115
m=3のとき
red(5)black(2)red(3) (n=10)を次のように考える
■○○□○■(□)
black(3)red(3)black(1)red(6)black(1) (n=14)ならば
○○○■□■○○○□(○)
○:直前と同じ色(先頭ならblack)
■:red のはじまり(○ (3=m)個ぶん)
□:black のはじまり (直前が red の終わり)
最後は必ずblackで終わるように列を1つ伸ばす
よってたくさんある○◇をならべて◇を先頭から交互に■と□にすると、ブロックのならびが得られる。
○=x個、◇=2y個とすると
n=x+y+y*m-1の列ができる。
import Data.List choose n r = div (product [n-r+1..n]) $ product [1..r] measure m n = sum [(n+1-a*(m-1)) `choose` (2*a) | a<-[0..div (n+1) (m+1)]] main = print.findIndex (>10^6).map (measure 50) $ [0..]