Problem 31
In England the currency is made up of pound, £, and pence, p, and there are eight coins in general circulation:
1p, 2p, 5p, 10p, 20p, 50p, £1 (100p) and £2 (200p).It is possible to make £2 in the following way:
1£1 + 150p + 220p + 15p + 12p + 31pHow many different ways can £2 be made using any number of coins?
動的計画法。memoiseの出番です。
とおもったら、条件を満たすうち最適なものを求めないさではなく
条件を満たすのは何通り
という問題だった。これは再帰でかけるぞ。こんなことしなくてももっと簡単に。
import Control.Monad.State import Control.Monad import Prelude hiding(lookup) import Data.Map (Map,lookup,insert,empty) import Data.Maybe type Table k v = Map k v type Memo a b = State (Table a b) b memoise :: Ord a => (a -> Memo a b) -> a -> Memo a b memoise f x = do table <- get case (lookup x table) of Just y -> return y Nothing -> do fx <- f x table' <- get put(insert x fx table') return fx runM :: (a -> Memo a b) -> a -> b runM m v = evalState (m v) empty coins = [200,100,50,20,10,5,2,1]::[Int] coin :: ([Int],Int)->Memo ([Int],Int) (Maybe Int) coin ([],_) = return Nothing coin (c:cs,v) | v < 0 = return Nothing | v == 0 =return$Just 1 | v > 0 = memoise coin' (c:cs,v) where coin' (c:cs,v)= do p1 <- coin (c:cs,v-c) p2 <- coin (cs,v) return.listToMaybe.scanr1 (+).catMaybes$ [p1,p2]
シンプル、だが上のほうが断然速い。さすが動的計画法
count _ 0 = 1 count [] _ = 1 count (c:cs) v =sum$map(count cs)[v-n|n<-[0,c..v]] main =print$ count [200,100,50,20,10,5,2] 200